Structure and Function of COVID-19 Encode Proteins in the Transcription and Replication Mechanism with Its Preventive Measures and Propose Efficacy Treatments: A Critical Systematic Review

Main Article Content

Oguh C. E.
Obiwulu E. N. O.
Oniwon W. O.
Okekeaji U.
Ugwu C. V.
Umezinwa O. J.
Osuji C. A.


The sudden occurrence outbreak of coronavirus disease in 2019 (COVID-19) by the severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) poses a serious harm worldwide and local economies. Due to high numbers of infection and death, the pandemic calls for an urgent demand of active, effective, affordable and available drugs to control and diminish the pandemic.  Coronavirus disease 2019 is a public health unexpected and sudden crisis which required action of international concern. At present there is no generally recognized effective pharmaceutical treatment to the disease, although it is to a great extent for patient contracting the severe form of the disease. The development of new strategies to prevent or control the spread of COVID-19 infections and the understanding of the virus replication, and pathogenesis required immediate action. Therefore, this systematic review was to investigate the biochemical effect of the virus in human, symptoms, prevention, statistics cases and summarize the evidence regarding chloroquine and hydroxychloroquine for the treatment of COVID-19.

Coronavirus, mechanism, prevention, structure, treatment

Article Details

How to Cite
E., O. C., O., O. E. N., O., O. W., U., O., V., U. C., J., U. O., & A., O. C. (2020). Structure and Function of COVID-19 Encode Proteins in the Transcription and Replication Mechanism with Its Preventive Measures and Propose Efficacy Treatments: A Critical Systematic Review. Asian Journal of Immunology, 3(4), 15-29. Retrieved from
Review Article


Coronavirus Disease (COVID-2019) Situation Reports 1−45; World Health Organization; 2020.

Anthony SJ, Johnson CK, Greig DJ, Kramer S, Che X, Wells H, Hicks AL, Joly DO, Wolfe ND, Daszak P, Karesh W, Lipkin WI, Morse SS, Mazet JAK, Goldstein T. Global patterns in coronavirus diversity. Virus Evol. 2017;3(1):vex012.

De Haan CA, Rottier PJ. Molecular interactions in the assembly of coronaviruses. Adv Virus Res. 2005;64: 165-230.

Masters PS. The molecular biology of coronaviruses. Adv Virus Res. 2006;66: 193-292.

Tan YJ, Lim SG, Hong W. Characterization of viral proteins encoded by the SARS-coronavirus genome. Antiviral Res. 2005; 65:69-78.

Chinese SMEC. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science. 2004; 303:1666-1669.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV Spike in the prefusion conformation. Science. 2020;eabb2507.

Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a Clinically Proven Protease Inhibitor. Cell; 2020.
DOI: 10.1016/j.cell.2020.02.052

Gorbalenya AE, Snijder EJ, Ziebuhr J. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 2000;81(4):853−879.

Baez-Santos YM St. John SE, Mesecar AD. The SARScoronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015;115:21−38.

Niemann H, Geyer R, Klenk HD, Linder D, Stirm S, Wirth M. The carbohydrates of mouse hepatitis virus (MHV) A59: structures of the O-glycosidically linked oligosaccharides of glycoprotein E1. EMBO J. 1984;3:665-670.

Narayanan K, Makino S. Characterization of nucleocapsid-M protein interaction in murine coronavirus. Adv Exp Med Biol. 2001;494:577-582.

Escors D, Ortego J, Enjuanes L. The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy- terminus. Adv Exp Med Biol. 2001;494: 589-593.

Raamsman MJB, Locker JK, de Hooge A, de Vries AA, Griffiths G, Vennema H, et al. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J Virol. 2000;74:2333-2342.

Vennema H, Godeke GJ, Rossen JW, Voorhout WF, Horzinek MC, Opstelten DJ, et al. Nucleo capsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 1996;15:2020-2028.

De Diego ML, Alvarez E, Almazan F, Rejas MT, Lamirande E, Roberts A, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol. 2007;81:1701-13.

Kuo L, Masters PS. The small envelope protein E is not essential for murine coronavirus replication. J Virol. 2003;77: 4597-4608.

Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100.

Zirkel F, Kurth A, Quan PL, Briese T, Ellerbrok H, Pauli G, et al. An insect nidovirus emerging from a primary tropical rainforest. M Bio. 2011;2:e00077-11.

Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. Nidovirales: Evolving the largest RNA virus genome. Virus Research. 2006;117:17-37.

Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490−502.

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan WA. Novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382(8): 727−733.

Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J. An updated estimation of the risk of transmission of the novel coronavirus (2019-nCov). Infect Dis Model. 2020;5: 248−255.

Susanna KPL, Kenneth SML, Alan KLT, Chung Tong S, Ming Wang, Garnet, Choi KV, et al. Recent Transmission of a Novel Alphacoronavirus, Bat Coronavirus HKU 10, from Leschenault’s Rousettes to Pomona Leaf- Nosed Bats: First Evidence of Inter species Transmission of Coronavirus between Bats of Different Suborders. J Virol. 2012;86:11906-11918.

Bosch BJ, vander Zee R, de Haan CA, Rottier PJ. The coronavirus spike proteinisa class Ivirusfusionprotein: Structural and functional characterization of the fusion corecomplex. J Virol. 2003; 77:8801-8811.

Susan RW, Sonia N. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev. 2005; 69:635-664.

Baranov PV, Henderson CM, Anderson CB, Gestel RF, Atkins JF, Howard MT. Programmed ribosomal frame shifting in decoding the SARS-CoV genome. Virology. 2005;332:498-510.

Cynthia SG, Kathleen MT, Thomas GK, Pierre ER, James AC, et al. Ultra structural characterization of SARS coronavirus. Emerg Infect Dis. 2004;10:320-326.

Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol. 2002; 76:3697-708.

Miller S, Krijnse-Locker J. Modification of intracellular membrane structures for virus replication. Nat Rev Microbiol. 2008;6: 363-74.

Mark RD. Seeking membranes: Positive-strand RNA virus replication complexes. PLoS Biol. 2008;6:e270.

Stertz S, Reichelt M, Spiegel M, Kuri T, Martinez Sobrido L, Garcia Sastre A, et al. The intracellular sites of early replication and budding of SARS-coronavirus. Virology. 2007;361:304-15.

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV Spike in the prefusion conformation. Science. 2020;eabb2507.

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding; 2020.

Morse JS, et al. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chem BioChem. 2020;21(5):730−738.

Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes Infect. 2020;9(1):221−236.

Dong N, et al. Genomic and protein structure modelling analysis depicts the origin and infectivity of 2019-nCoV, a new coronavirus which caused a pneumonia outbreak in Wuhan, China, bioRxiv; 2020.
DOI: 10.1101/2020.01.20.913368

European centre for disease prevention and control.

Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 2003; 3:722–7.

Colson P, Rolain JM, Raoult D. Chloroquine for the 2019 novel coronavirus SARSCoV-2. Int J Antimicrob Agents. 2020;105923.

Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res; 2020.

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends; 2020.

Wu Zhong2, Manli Wang1. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitroCell Discovery. Cell Discovery. 2020;6:16.

Holshue ML, et al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med; 2020.

Weniger H. Review of side effects and toxicity of chloroquine. Bull. World Health. 1979;79:906.

McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am. J. Med. 1983;75:11–18.

Liu Jia 1, Ruiyuan Cao2, Mingyue Xu1,3, Xi Wang1, Huanyu Zhang1,3, Hengrui Hu1,3, Yufeng Li1,3, Zhihong Hu 1. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-COV-2 infection in vitro. Cell Discovery. 2020;6(16).

Savarino A, et al. New insights into the antiviral effects of chloroquine. Lancet
Infect. Dis. 2006;6:67–69.

Mingo RM, et al. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step. J. Virol. 2015;89: 2931–2943.

Zheng N, Zhang X, Rosania GR. Effect of phospholipidosis on the cellular pharmacokinetics of chloroquine. J. Pharmacol. Exp. Ther. 2011;336:661– 671.

Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA. 1978;75:3327–3331.

Popert AJ. Choloroquine: A review. Rheumatology. 1976;15:235–238.