Interferences in Immunological Assays: Causes, Detection, and Prevention

Saber Anouar *

Laboratory of Immunology, University Hospital Mohammed VI, Faculty of Medicine and Pharmacy Cadi Ayad, Marrakech, Morocco.

Rajae Hazim

Laboratory of Immunology, University Hospital Mohammed VI, Faculty of Medicine and Pharmacy Cadi Ayad, Marrakech, Morocco.

Admou Brahim

Laboratory of Immunology, University Hospital Mohammed VI, Faculty of Medicine and Pharmacy Cadi Ayad, Marrakech, Morocco.

*Author to whom correspondence should be addressed.


Immunological assays are fundamental tools in modern diagnostics, providing indispensable insights vital for clinical decisions and scientific inquiries. However, the reliability of these assays is at times compromised by various interferences, casting doubt on the authenticity of results. This abstract explores the origins, detection methods, and potential solutions concerning interferences in immunological assays.

Various factors, such as cross-reactivity, sample matrix effects, endogenous interferences, and test-specific nuances, can introduce deviations in immunological assessments. Understanding these interference mechanisms is crucial for devising effective countermeasures. A range of approaches, from implementing interference controls and serial dilution analyses to utilizing specific tests susceptible to interference, have been employed for detection. Additionally, advancements in technology have enhanced detection capabilities by introducing tools resistant to interference.

To address anomalies in immunological assays, a comprehensive approach is essential. Implementing rigorous quality standards during assay design and execution is paramount. Furthermore, documenting interference incidents and establishing guidelines for disclosing such occurrences promote transparency in academic and clinical settings. Collaborative efforts involving researchers, assay manufacturers, and regulatory agencies are integral to driving progress and ensuring result accuracy.

This paper emphasizes the importance of identifying, characterizing, and mitigating the diverse interferences present in immunological assays. Tackling the complexities of these interferences and embracing innovative strategies are central to refining the precision and utility of diagnostic immunology.

Keywords: Interferences, immunological tests, cross reactivity, antibody-related interferences, binding proteins, matrix, contrary effect

How to Cite

Anouar, S., Hazim , R., & Brahim , A. (2024). Interferences in Immunological Assays: Causes, Detection, and Prevention. Asian Journal of Immunology, 7(1), 71–78. Retrieved from


Download data is not yet available.


Sapin R. Interférences dans les immunodosages : mécanismes et conséquences en endocrinologie. Annales d’Endocrinologie. 2008;69(5):415‑25.

Ghazal K, Brabant S, Prie D, Piketty ML. Hormone Immunoassay Interference: A 2021 Update. Ann Lab Med. 1 janv 2022;42(1):3‑23.

Baudin B, Pilon A. Interférences et pièges en immuno-analyse. Revue Francophone des Laboratoires. mars 2019;2019(510): 60‑6.

Caruso B, Bovo C, Guidi GC. Causes of Preanalytical Interferences on Laboratory Immunoassays - A Critical Review. EJIFCC. mars 2020;31(1):70‑84.

Boscato LM, Egan GM, Stuart MC. Specificity of two-site immunoassays. Journal of Immunological Methods. févr 1989;117(2):221‑9.

Cobo A, Martín-Suarez A, Calvo MV, Domínguez-Gil A, De Gatta MMF. Clinical Repercussions of Analytical Interferences Due to Aldosterone Antagonists in Digoxin Immunoassays: An Assessment. Therapeutic Drug Monitoring. Avr. 2010;32 (2):169‑76.

Hainque B, Baudin B, Lefebvre P. Appareils et méthodes en biochimie et biologie moléculaire. Éd. revue et augmentée. Paris: Flammarion médecine-sciences. (De la biologie à la clinique); 2008.

Spencer CA. Clinical Utility of Thyroglobulin Antibody (TgAb) Measurements for Patients with Differentiated Thyroid Cancers (DTC). The Journal of Clinical Endocrinology & Metabolism. déc 2011;96(12):3615‑27.

Lupoli GA, Okosieme OE, Evans C, Clark PM, Pickett AJ, Premawardhana LDKE, et al. Prognostic Significance of Thyroglobulin Antibody Epitopes in Differentiated Thyroid Cancer. The Journal of Clinical Endocrinology & Metabolism. janv 2015;100(1):100‑8.

Boscaro M, Sonino N, Paoletta A, Rampazzo A, Mantero F. Evidence for Ultra-Short Loop Autoregulation of Adrenocorticotropin Secretion in Man. The Journal of Clinical Endocrinology & Metabolism. Févr. 1988;66(2):255‑7.

Lewis JG, Florkowski CM, Elder PA, Hunt PJ. Rheumatoid factor and false positive sex-hormone binding globulin. Clinica Chimica Acta. Juin. 2003;332(1‑2):139‑41.

Levinson SS, Miller JJ. Towards a better understanding of heterophile (and the like) antibody interference with modern immunoassays. Clinica Chimica Acta. 2002;325(1‑2):1‑15.

Grasko J, Willliams R, Beilin J, Glendenning P, Fermoyle S, Vasikaran S. A diagnostic conundrum: heterophilic antibody interference in an adrenocorticotropic hormone immunoassay not detectable using a proprietary heterophile blocking reagent. Ann Clin Biochem. 2013;50(5): 433‑7.

Rulander NJ, Cardamone D, Senior M, Snyder PJ, Master SR. Interference From Anti-Streptavidin Antibody. Archives of Pathology & Laboratory Medicine. 1 août 2013;137(8):1141‑6.

Nelson JC, Wilcox RB. Analytical performance of free and total thyroxine assays. Clin Chem. Janv. 1996;42(1):14 6‑54.

Stockigt JR, Lim CF. Medications that distort in vitro tests of thyroid function, with particular reference to estimates of serum free thyroxine. Best Practice & Research Clinical Endocrinology & Metabolism.. 2009;23(6):753‑67.

Ekins R. Measurement of Free Hormones in Blood. Endocrine Reviews. Févr 1990; 11(1):5‑46.

Selby C. Interference in Immunoassay. Ann Clin Biochem. 1999;36(6): 704‑21.

Anckaert E, Platteau P, Schiettecatte J, Devroey P, Van Steirteghem A, Smitz J. Spuriously elevated serum estradiol concentrations measured by an automated immunoassay rarely cause unnecessary cancellation of in vitro fertilization cycles. Fertility and Sterility. Juin. 2006;85(6):1822.e5-1822.e8.

Rotmensch S, Cole LA. False diagnosis and needless therapy of presumed malignant disease in women with false-positive human chorionic gonadotropin concentrations. The Lancet. Févr. 2000; 355(9205):712‑5.

Lindstedt G, Frändberg S. Unreliable immunoassays, patients’ safety, and clinical research. The Lancet. Janv. 2002; 359(9303):356.

Temple RC, Clark PMS, Nagi DK, Schneider AE, Yudkin JS, Hales CN. Radioimmunoassay May Overestimate Insulin In Non-Insulin-Dependent Diabetics. Clin Endocrinol. Juin. 1990;32 (6):689‑93.

Swerdloff RS, Wang C. Free Testosterone Measurement by the Analog Displacement Direct Assay: Old Concerns and New Evidence. Clinical Chemistry. 1 mars. 2008;54(3):458‑60.

Ooi DS, Donnelly JG. More on the analog free-testosterone assay. Clin Chem. Mai. 1999;45(5):714‑6.

Faix JD. Principles and pitfalls of free hormone measurements. Best Practice & Research Clinical Endocrinology & Metabolism. Oct. 2013;27(5):631‑45.

Winters SJ, Kelley DE, Goodpaster B. The analog free testosterone assay: are the results in men clinically useful? Clin Chem. Oct. 1998;44(10):2178‑82.