Effects of D-Ribose-L-Cysteine on Lipid Profile, Atherogenic Index and Infertility in Streptozotocin-Induced Male Diabetic Wistar Rats

Main Article Content

Abiodun Oluwabusola Adedeji
Patrick Kunle Orisadiran

Abstract

Aims: The present study aimed at determining the effects of D-Ribose-L-Cysteine on lipid profile, atherogenic index, and infertility in streptozotocin-induced diabetic male Wistar rats. 

Methods: A total of twenty-eight adult male Wistar rats were divided into four groups of seven rats each. 1: Normal control group, 2: Diabetic control group, 3: Normal rats treated with 30 mg/kg body weight of D-Ribose-L-cysteine, 4: Diabetic rats treated with 30 mg/kg body weight of D-Ribose-L-cysteine. Group 2 and 4 were injected intraperitoneally with a single dose of streptozotocin (STZ) (65 mg/kg in 0.1 M cold citrate buffer, pH 7.5) prior to D-Ribose-L-cysteine treatment. Group 4 were subsequently administered D-Ribose-L-cysteine orally 72 hours post administration of streptozotocin, twice daily for 28 days. Parameters tested include: fasting blood and serum glucose, malondialdehyde (MDA) concentration, sperm motility, morphology and count. Testosterone (TT), follicle stimulating hormone (FSH) and luteinizing hormone (LH) were also examined.

Results: The results showed that diabetic rats showed weights loss, increased MDA, increase blood and serum glucose levels, elevated lipid profile, altered TT, FSH and LH as well as reduced sperm count, motility and morphology. These effects were ameliorated in diabetic rats treated with D-Ribose-L-cysteine.

Conclusion: Current study revealed that D-Ribose-L-Cysteine attenuates the oxidative stress in streptozotocin-induced diabetic rats on blood glucose, lipid profile, reproductive hormone and sperm parameters.

Keywords:
D-Ribose and L-Cysteine, wistar rats, diabetic rat, sperm, hormone, streptozotocin.

Article Details

How to Cite
Oluwabusola Adedeji, A., & Kunle Orisadiran, P. (2020). Effects of D-Ribose-L-Cysteine on Lipid Profile, Atherogenic Index and Infertility in Streptozotocin-Induced Male Diabetic Wistar Rats. Asian Journal of Immunology, 3(1), 11-22. Retrieved from http://journalaji.com/index.php/AJI/article/view/30104
Section
Original Research Article

References

American Diabetes Association, diagnosis and classification of diabetes mellitus, Diabetes Care. 2014;37:S81–S90.

Bastaki S. Review: Diabetes mellitus and its treatment. Intl J Diabetes Metab. 2005; 13:111-34.

Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4-14.

Hussain AMHE. Hypoglycemic, hypolipidemic and antioxidant properties of combination of Cucurmin from Cucurma longa Linn. and partially purified product from Abroma augusta Linn. in streptozotocin induced diabetes. Indian J Clin Biochem. 2002;17:33-43.

Hebert SL, Nair KS. Protein and energy metabolism in type 1 diabetes. Clinical Nutrition. 2010;29(1):13–17.

Dokken BB. The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum. 2008;21(3):160–165.

Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2012;1821(5):800–808.

Grundy MS, Benjamin IJ, Burke GL Diabetes and cardiovascular disease: A statement for healthcare professionals from the american heart association. Circulation. 1999;100(10):1134–1146.

Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology. 2007;39(1):44–84.

Schilling JD. The mitochondria in diabetic heart failure: From pathogenesis to therapeutic promise. Antioxidants & Redox Signaling. 2015;22(17):1515–1526.

Schwartz EA, Reaven PD. Lipolysis of triglyceriderich lipoproteins, vascular inflammation, and atherosclerosis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2012;1821(5):858–866.

O'Neill J, Czerwiec A, Agbaje I, Glenn J, Stitt A, McClure N. Differences in mouse models of diabetes mellitus in studies of male reproduction. Int J Androl. 2010;33: 709-716.

Ricci G, Catizone A, Esposito R, Pisanti FA, Vietri MT, Galdieri M. Diabetic rat testes: Morpholigical and functional alterations. Andrologia. 2009;41:361- 368.

Agbaje IM, Rogers DA, McVicar CM, McClure N, Atkinson AB, Mallidis C. Insulin dependent diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1871-1877.

Joao RS, Amaral S, Oliveira P. Diabetes and the impairment of reproductive function: possible role of mitochondria and reactive species. Bentham Science. 2009; 4:1573-3993.

Xie JT, Wanq A, Mehendale S, Wu J, Aung HH, Dey L, Anti-diabetic effects of Gymnema yunnanense extract. Pharmacol Res. 2003;47:323-29.

Arikawe AP, Daramola AO, Odofin AO, Obika LF. Alloxan-induced and insulin resistant diabetes mellitus affect semen parameters and impair spermatogenesis in male Rats. Reprod Health. 2006;10:106-113.

La Vignera S, Condorelli R, Vicari E, D’Agata R, Calogero AE. Diabetes and sperm parameters: A brief review. J Androl 2011;33:145-153.

Nagasawa, HT. Method to enhance delivery of glutathione and ATP levels in cells. Google Patents; 2016.

Roberts JC, Nagasawa HT, Zera RT, Fricke RF, Goon DJ. Prodrugs of L-cysteine as protective agents against acetaminophen-induced hepatotoxicity. 2- (Polyhydroxyalkyl)-and2-(polyacetoxyalkyl) thiazolidine-4 (R)-carboxylic acids, J. Med. Chem. 1987;30:1891–1896.

Benedict F, Opeyemi A, Mulikat O, Abraham O, Adeoye O. Effect of D-ribose-L-cysteine on aluminum induced testicular damage in male Sprague-Dawley rats. JBRA Assisted Reproduction. 2017;21(2): 94-100.

Albro PW, Corbelt JT, Schroeder JL. Application of the thiobarbiturate assay to the measurement of lipid products in microsomes. Chem Biol Interact. 1986; 86(3):185-194.

Zak B. Determination of total cholesterol using reaction with ferric chloride and sulphuric acid. Am J Clin Path. 1959;27: 583-590.

Mendez A, Franklein J, Slahegan BH. Simple manual method for determination of serum triglycerides. Clin Chem. 1975; 21(6):760-770.

Lopez-Vitrella MF, Stone P, Ellis S, Coltwell JA. Cholesterol determination in high density lipoprotein, separated by three different methods. Clin Chem. 1977; 23(5):882-884.

Sandkamp M, Funke H, Schulter M, Kahlar E, Assman G. Lipoprotein(a) is an independent risk factor for myocardial infarction at a young age. Clin Chem. 1990;36(1):20-23.

World Health Organization. laboratory manual for the examination of human semen and sperm cervical mucus interaction. Cambridge: Cambridge University Press, UK; 1999.

Keel BA, Webster BW. Handbook of the laboratory diagnosis and treatment of infertility. Boca Raton: CRC Press Incorporation. 1990;37.

Bartak V, Josiko M, Horackova M. Human diabetes and sperm quality. Int. J. Fertil. 1975;20:30-32.

Faerman I, Vilar O, Riverola M, Rosner J, Jadzinsky M, Fox D, Perez A, Ber nstein-Hahn L. Impotence and diabetes. Studies of androgenic function indiabetic impotent males. Diabetes. 1972;21:23-30.

Schloffing K. Hypogonadism in male diabetic subjects. In: On the nature and treatment of diabetes. Leibel B, Wrenshall G, eds. Excerpta Medica. 1965;505-521.

Hwang W, Bak D, Kim D, Hong J, Han S, Park K, Lim K, Lim D. Attenuation of streptozotocin-induced pancreatic beta cell death in transgenic fat-1 mice via autophagy activation, Endocrinol. Metab. (Seoul, Korea); 2015.

Chen WB, Gao L, Wang J, Wang YG, Dong Z, Zhao J, Mi QS, Zhou L, Conditional ablation of HDAC3 in islet beta cells results in glucose intolerance and enhanced susceptibility to STZ-induced diabetes, Oncotarget. 2016;7:57485.

Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes, Nat. Med. 2015;21: 173.

Kalaiarasi P, Pugalendi KV. Antihyper-glycemic effect of 18β- glycyrrhetinic acid, a glycone of glycyrrhizin, on streptozotocin diabetic rats. Eur J Pharmacol. 2009; 606:269-73.

Babu SP, Prabuseenivasan P, Ignacimuthu S. Cinnamaldehyde- A potential antidiabetic agent. Phyto-medicine. 2007;4:15-22.

Karasu C. Glycoxidative stress and cardiovascular complications in experimentally induced diabetes: effects of antioxidant treatment, Open Cardiovasc. Med. J. 2010;4.

Omotayo EO, Gurtu S, Sulaiman AS, Wahab MSA, Sirajudeen K, Salleh MSM. Hypoglycemic and antioxidant effects of honey supplementation in streptozotocin-induced diabetic rats, Int. J. Vitam. Nutr. Res. 2010;80:74.

Van Dam PS, Van Asbeck BS, Bravenboer B, Van Oirschot JF, Gispen WJ, Marx JJ. Nerve function and oxidative stress in diabetic and vitamin E-deficient rats, Free Radic. Biol. Med. 1998;24:18–26.

Macut D, Bjekić-Macut J, Savić-Radojević A. Dyslipidemia and oxidative stress in PCOS, Polycystic Ovary Syndrome, Karger Publishers; 2013.

Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus, World J. Diabetes. 2015; 6:456–480.

George N, Kumar TP, Antony S, Jayanarayanan S, Paulose C. Effect of vitamin D 3 in reducing metabolic and oxidative stress in the liver of streptozotocin-induced diabetic rats, Br. J. Nutr. 2012;108:1410–1418.

Lenzen S, The mechanisms of alloxan-and streptozotocin - induced diabetes, Diabetologia. 2008;51:216–226.

Li L, Leung PS. Pancreatic cancer, pancreatitis, and oxidative stress. gastro-intestinal tissue, Elsevier; 2017.

Almeida DAT, Braga CP, Novelli ELP, Fernandes AAH. Evaluation of lipid profile and oxidative stress in STZ-induced rats treated with antioxidant vitamin. Brazilian Archives of Biology and Technology. 2012; 55(4):527–536.

Ayyasamy R, Leelavinothan P. Myrtenal alleviates hyperglycaemia, hyperlipidaemia and improves pancreatic insulin level in STZ-induced diabetic rats. Pharmaceuti-cal Biology. 2016:54(11):2521–2527.

Kim MS, Wang Y, Rodrigues B. Lipoprotein lipase mediated fatty acid delivery and its impact in diabetic cardiomyopathy. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids. 2012;1821(5):800–808.

Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectrum. 2008;21(3):160–165.

Pereira Braga C, Momentti AC, Barbosa Peixoto F. Influence of treatment with quercetin on lipid parameters and oxidative stress of pregnant diabetic rats. Canadian Journal of Physiology and Pharmacology 2013;91(2):171–177.

Yang R, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition Journal. 2006;22(11-12):1185–1191.

Jiang X, Chu Q, Li L, Qin L, Hao J, Kou L, Lin F, Wang D. The anti‑fatigue activities of Tuber melanosporum in a mouse model, Exp. Ther. Med. 2018;15:3066–3073.

Szudelski T. The mechanism of alloxan and streptozotocin action in b-cells of the rat pancreas. Physiol. Res. 2011;50:536- 546.

Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotoc ininduced oxidative stress and cell damage in rat pancreas. Pharmacol. Res. 2005; 51:117-123.

Wankeu-Nya M, Florea A, Bâlici S, Watcho P, Matei H, Kamanyi A. Dracaena arborea alleviates ultra-structural spermatogenic alterations in streptozotocin-induced diabetic rats. BMC Complement Altern. Med. 2013;13:71.

Adelakun SA, Omotoso OD, Aniah JA. Modulating role of D-Ribose-L-cysteine on oxidative stress in streptozotocin induced diabetes on plasma lipoprotein, oxidative status, spermato-genesis and steroid-genesis in male wistar rats. Curr Res Diabetes Obes J. 2018;9(2):1-7

Ballester J, Munoz MC, Dominguez J, Sensat M, Rigaut T, Guinovart JJ, Rodrıguez-Gi JE. Insulin-dependent diabetes affects testicular function by FS Hand LH-linked mechanisms. J Androl. 2004;25:706-19.

Suthagar E, Soudamani S, Yuvaraj S, Ismail AK, Aruldhas MM and Balasubramanian K. Effects of streptozotocin (STZ)-induced diabetes and insulin replacement on rat ventral prostate. Biomed. Pharmacotherapy. 2009;6(3):43- 50.